Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Appl Radiat Isot ; 199: 110863, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37276661

RESUMEN

In the present work, the Doppler Shift Attenuation method (DSAM) was used to analyze the observed lineshapes of transitions from excited states in 45Sc, populated in the reaction 36Ar + 12C at a beam energy of 145 MeV. The interpretation and comparison of the experimental results have been performed with large-scale shell model calculations, involving different interactions like: GX1A, GX1J, FPD6, KB3 and ZBM2. KB3 and FPD6 (present work) interactions in the negative parity states, and in positive parity states ZBM2 are most pre-eminent in reproducing the results, due to the large configuration space describing strong collective effects. Furthermore, the present work also looks at the details of the shell model helping in improving the understanding for the occupancy of orbitals. The present investigation suggests the observation of stronger collectivity for positive parity states over negative parity states with predicted enhanced collectivity of states in 45Sc nucleus.

2.
Phys Rev Lett ; 128(24): 242502, 2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35776479

RESUMEN

The isomer depletion of ^{93m}Mo was recently reported [Chiara et al., Nature (London) 554, 216 (2018)NATUAS0028-083610.1038/nature25483] as the first direct observation of nuclear excitation by electron capture (NEEC). However, the measured excitation probability of 1.0(3)% is far beyond the theoretical expectation. In order to understand the inconsistency between theory and experiment, we produce the ^{93m}Mo nuclei using the ^{12}C(^{86}Kr,5n) reaction at a beam energy of 559 MeV and transport the reaction residues to a detection station far away from the target area employing a secondary beam line. The isomer depletion is expected to occur during the slowdown process of the ions in the stopping material. In such a low γ-ray background environment, the signature of isomer depletion is not observed, and an upper limit of 2×10^{-5} is estimated for the excitation probability. This is consistent with the theoretical expectation. Our findings shed doubt on the previously reported NEEC phenomenon and highlight the necessity and feasibility of further experimental investigations for reexamining the isomer depletion under low γ-ray background.

3.
Phys Rev Lett ; 126(15): 152502, 2021 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-33929212

RESUMEN

A new α-emitting isotope ^{214}U, produced by the fusion-evaporation reaction ^{182}W(^{36}Ar,4n)^{214}U, was identified by employing the gas-filled recoil separator SHANS and the recoil-α correlation technique. More precise α-decay properties of even-even nuclei ^{216,218}U were also measured in the reactions of ^{40}Ar, ^{40}Ca beams with ^{180,182,184}W targets. By combining the experimental data, improved α-decay reduced widths δ^{2} for the even-even Po-Pu nuclei in the vicinity of the magic neutron number N=126 are deduced. Their systematic trends are discussed in terms of the N_{p}N_{n} scheme in order to study the influence of proton-neutron interaction on α decay in this region of nuclei. It is strikingly found that the reduced widths of ^{214,216}U are significantly enhanced by a factor of two as compared with the N_{p}N_{n} systematics for the 84≤Z≤90 and N<126 even-even nuclei. The abnormal enhancement is interpreted by the strong monopole interaction between the valence protons and neutrons occupying the π1f_{7/2} and ν1f_{5/2} spin-orbit partner orbits, which is supported by the large-scale shell model calculation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...